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Abstract—Ready transformation of N-dimethylphosphoryl-protection into the corresponding N-acyl derivatives (in the presence of
acyl chlorides and DMAP in pyridine) provided an effective approach to the synthesis of glucosamine-containing oligosaccharides
with alternate N-acyl substitutions.
� 2007 Elsevier Ltd. All rights reserved.
2-Amino-2-deoxy-DD-glucopyranose (DD-glucosamine)
exists as an integral component of numerous biologi-
cally important prokaryotic and eukaryotic carbo-
hydrates, including chitin, peptidoglycans, mucopoly-
charides, lipopolysaccharides, and nodulation fac-
tors.1–3 The 2-amino-group of the DD-glucosamine resi-
dues is mostly substituted with an acetyl group; while
replacement of the N-acetate with long chain acyl
groups occurs in the lipopolysaccharides2 and nodula-
tion factors,3 where the fatty acid moieties are crucial
to their biological functions. It is also noted that a vari-
ety of the synthetic N- and O-acylated glucosamine
derivatives show immuno-modulating and antitumor
effects of potentially clinical usefulness.4,5 Nevertheless,
introduction of the glucosamine residue into oligosac-
charides and glycoconjugates has been a long-standing
problem in preparative carbohydrate chemistry.6 The
2-N-protecting groups always play a key role in glyco-
sidic coupling with glucosamine derivatives as both
donors and acceptors.6,7 While the N-acyl-glucosamine
derivatives are usually not the choice for glycosylation
due to the involvement of the 2-amide function in side
reactions.6,7 Thus, the required N-acyl residues have to
be introduced at the final stage of synthesis after N-
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deprotection. Recently, we have shown that 2-N-dimeth-
ylphosphoryl(DMP)-glucosamine derivatives could be
effective glycosyl donors and acceptors in the synthesis
of glucosamine-containing oligosaccharides.8 However,
deprotection of the 2-N-DMP-group afterwards remains
problematic; the literature protocols, which require
strong hydrolytic conditions (NaOH, EtOH/H2O, reflux
or NH2NH2ÆH2O, EtOH, reflux), jeopardize the multi-
functional groups in the saccharide substrates and lead
to low yields of the hydrolyzed products.9 Herein, we
report the ready transformation of the 2-N-DMP-pro-
tection into N-acyl substitution under mild conditions
in excellent yields.

We have found that N-transacylation could take place
on the 2-N-acetyl-a-DD-glucosamine derivatives under
the action of an excess amount of acyl chlorides in
refluxing pyridine.10 Acyl replacement of the 2-N-phos-
phoryl group might also be feasible under similar condi-
tions, via N-acylphosphoramidates formation and the
subsequent P–N bond cleavage,11 thus applicable to
the sophisticated saccharide substrates. Expectedly,
treatment of p-methoxyphenyl 3,4,6-tri-O-acetyl-2-N-
DMP-2-deoxy-b-DD-glucopyranoside (1)8 with acetyl
chloride (10 equiv) in the presence of DMAP in reflux-
ing pyridine overnight provided the desired 2-N-acetyl-
glucosamine derivative 2 in an excellent 91% yield
(Table 1, entry 1). To test the scope of this transforma-
tion, two disaccharides of glucosamine (7 and 8) with
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Table 1. Ready transformation of the N-DMP-protected saccharides into the corresponding N-acyl derivativesa

Entry Substrates Acyl chloride Products Yield (%)
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7 8 C5H11COCl NH
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8 8 Undec-10-enoyl chloride NH
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a For a typical procedure for this transformation: To a stirred mixture of 7 (39 mg, 0.04 mmol) and DMAP (3 mg, 0.025 mmol) in pyridine (2.5 mL)
at room temperature, was added dropwise undec-10-enoyl chloride (89 ll, 0.4 mmol) under the atmosphere of Ar. The temperature was allowed to
increase naturally to 120 �C to reflux and the stirring continued overnight. The mixture was then concentrated in vacuo. The residue was purified by
silica gel column chromatography (petroleum ether–EtOAc 3:1) to afford 9c (36 mg, 88%) as a white solid.
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alternate N-phthalimido(Phth)- and DMP-protection
were readily prepared (Scheme 1)8 and applied to the
present selective N-acyl substitution reaction. The
results are listed in Table 1 (entries 2–8).
Under similar conditions (10 equiv of acyl chloride,
0.5 equiv of DMAP, pyridine, reflux, overnight), the
N-DMP-group (in saccharides 1, 7, and 8) was cleanly
replaced with N-acyl (acetyl, hexanoyl, and undec-10-
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Scheme 1. Reagents and conditions: (a) PivCl (6 equiv), pyridine, �4 �C, 65%; (b) TMSOTf (0.3 equiv), 4 Å MS, CH2Cl2, �15 �C to rt, 49% (for 7;
49% 4 recovered); 64% (for 8).
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enoyl) substitutions, affording the corresponding N-acyl
derivatives (2, 9a–c, and 10a–c) in 79–99% isolated
yields. The O-acyl (acetyl, pivaloyl) groups, the O-acetal
group, the 2-N-Phth group, and the glycosidic link-
ages stayed intact in this transformation. Interestingly,
when FmocCl (9-fluorenylmethoxycarbonyl chloride)
was used in the treatment of disaccharide 7, com-
pound 9d with a free 2-amino-group was obtained
exclusively in 78% yield (entry 5), where the correspond-
ing 2-N-Fmoc group could not survive in the presence of
DMAP in refluxing pyridine. This result provides an
easy entry to the selective deprotection of the 2-N-
DMP-group.

Subsequent removal of the N-Phth, O-acyl, and O-acetal
protections in disaccharides 9a/b and 10a/b under con-
ventional acidic and basic conditions provided the corre-
sponding disaccharides 11a/b and 12a/b in satisfactory
yields (60–92%, Scheme 2), where the two 2-amino-
groups of the glucosamine residues could be distin-
guished with different substitutions.

Given the efficiency of the present transformation of the
2-N-DMP-protection of glucosamines into the corre-
sponding N-acyl (and –NH2) derivatives (in the presence
of acyl chlorides and DMAP in pyridine), we can foresee
the further application of the 2-N-DMP-protection in
the synthesis of glucosamine-containing oligosaccha-
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Scheme 2. Reagents and conditions: (a) NH2NH2ÆH2O, MeOH, reflux, ov
(6 equiv), MeOH, rt, overnight; then NH2NH2ÆH2O, MeOH, reflux, overnig
rides and glycoconjugates of biological and pharmaco-
logical significance.12
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